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The Bayesian perspective on statistics asserts that it makes sense synthetic data with substantial added random noise, we dem-
to speak of a probability of an unknown parameter having a partic- onstrate that the error estimates obtained using the Bayesian
ular value. Given a model for an observed, noise-corrupted signal, approach are consistent with a Monte Carlo error analysis in
we may use Bayesian methods to estimate not only the most proba- the case of two well-resolved Lorentzians, and that coupling
ble value for each parameter but also their distributions. We pre- constants can be reliably obtained from overlapping anti-
sent an implementation of the Bayesian parameter estimation for-

phase doublets in cases where the splitting is substantiallymalism developed by G. L. Bretthorst (1990, J. Magn. Reson. 88,
smaller than one-half of the linewidth. An illustration of533) using the Metropolis Monte Carlo sampling algorithm to
application to the extraction of coupling constants from ex-perform the parameter and error estimation. This allows us to
perimental data containing an antiphase doublet with passivemake very few assumptions about the shape of the posterior distri-
splittings is given.bution, and allows the easy introduction of prior knowledge about

constraints among the model parameters. We present evidence
that the error estimates obtained in this manner are realistic, and THEORY
that the Monte Carlo approach can be used to accurately estimate
coupling constants from antiphase doublets in synthetic and exper- The Bayesian perspective on statistics asserts that a proba-
imental data. q 1998 Academic Press

bility represents a degree of belief rather than a frequency
of occurrence (4) . In other words, it is possible to speak of
the probability of a particular vector of parameter values

A common task in NMR spectroscopy is the accurate among all possible parameter vectors in a statistical model.
Thus, the process of parameter estimation and error estima-estimation of spectral parameters (such as splittings, line-

widths, or intensities) and their uncertainties from time-do- tion is intimately connected from a Bayesian point of view.
For example, one could choose the best parameter estimatemain data (FIDs). In addition, it is often possible to specify

constraints among the parameters. For example, the presence as the parameter vector U which maximizes the probability
density P(UÉD) given a data vector D . Similarly, the uncer-of a known multiplet structure could lead to a significant

reduction in the number of adjustable parameters, since one tainty in U could be expressed by a credible interval, i.e., a
hyperrectangle in U space that encloses a given fractioncould specify constraints among the frequencies, phases, and

intensities. Thus, the ideal quantitative NMR data analysis of the probability density P(UÉD) . Similarly, correlations
between the model parameters can be determined from thetool not only would estimate parameter values and uncertain-

ties but also would allow the flexible specification of rela- covariance structure of P(UÉD) . The formal justification of
such methods and a discussion of their relationship to classi-tionships among the model parameters.

We present here a new implementation of Bayesian pa- cal point and interval estimation is beyond the scope of this
paper, but has been amply discussed in the statistical litera-rameter estimation based on the work of Bretthorst (1) .

Although it is certainly not the ideal quantitative NMR data ture (e.g., Refs. (5, 6)) .
Previous use of Bayesian methods in the statistical analy-analysis tool, it does possess many of the desirable attributes

mentioned above. In addition, we hope to demonstrate that sis of NMR data was pioneered by Bretthorst, who developed
the theoretical methodology (1, 7–11) and with co-workersit is robust and flexible and that it can give reasonable esti-

mates of the reliability of the extracted parameters. We have evaluated its performance using synthetic NMR data con-
taining well-resolved signals (12, 13) . Applications ofchosen to use the Metropolis–Hastings Monte Carlo algo-

rithm (2, 3) to generate points in the parameter space ac- Bayesian methods by other workers have included the esti-
mation of coupling constants from poorly resolved in-phasecording to the Bayesian posterior probability density. Using
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218 ANDREC AND PRESTEGARD

doublets (14) and the estimation of frequencies in multidi- In Eqs. [4] and [5], N is the number of complex data points,
dR and dI are the real and imaginary data vectors, respec-mensional constant-time NMR data (15) . In addition, a more

theoretically oriented study using methodology similar to tively, and the (r) operator denotes the scalar product of
two vectors. If the noise variance is unknown, or if we dothat of the work described here has recently appeared in the

electrical engineering literature (16) . In our implementation, not desire to estimate it, then it can be eliminated by integra-
tion over a suitable prior probability (in this case, Jefferey’swe have chosen to use a subset of the theoretical results

obtained by Bretthorst (1) . prior P(sÉI) Å s01) :
For convenience, we present a condensed version of the

theoretical background below. Bretthorst’s notation has been
P(DÉU, I) } *

`

0

P(DÉU, s, I)
s

ds }
(N 0 1)!

QN
. [6]retained, with some minor changes to reflect the fact that

we make no distinction between the linear and nonlinear
parameters. For more details, the reader should consult Ref.

Since the Metropolis–Hastings algorithm only considers ra-(1) . All of the relevant information for the parameter estima-
tios of probabilities from the same density function, the facttion problem is contained in the posterior probability density
that the probability density is known only up to a constantof the model parameters U given the data vector D and any
factor is irrelevant to our implementation.prior information I : P(UÉD , I) . Using Bayes’ theorem, we

To obtain a practically useful implementation of the theo-find
retical expressions shown above, it is imperative that the
quantity Q be evaluated as efficiently and as accurately asP(UÉD , I) Å P(DÉU, I)P(UÉI)

P(DÉI)
. [1]

possible. The first term in Eq. [5] corresponds to a projection
of the data vectors onto themselves. Since this need be done

By taking the prior probabilities P(UÉI) to be uniform, only once during the calculation, its optimization with re-
uninformative improper distributions, we find that the poste- spect to speed is not crucial. For the second term in Eq. [5] ,
rior probability of the parameters is proportional to the likeli- we evaluate the projections of the data vectors onto the
hood of the data given a parameter vector: model basis functions Uj and Vj using a generalization of

the Clenshaw recurrence formula for finite sums (see Appen-P(UÉD , I) } P(DÉU, I) . [2]
dix) , which presumes that the data have been sampled uni-

Furthermore, we define our model functions to consist of formly in time. We have chosen this instead of Bretthorst’s
linear superpositions of m exponentially damped sinusoids method of using the exponentially weighted Fourier trans-

form (10) because we must be able to evaluate Q at arbitrary
fR( t) Å ∑

m

jÅ1

Uj( t) Å ∑
m

jÅ1

Ij cos(vjt / fj)e
0a j t frequencies. Although the Fourier transform approach is

valid, it can be used to evaluate Q only at discrete points
determined by the degree of zero-filling. In addition, therefI ( t) Å ∑

m

jÅ1

Vj( t) Å ∑
m

jÅ1

Ij sin(vjt / fj)e
0a j t [3]

is the very real possibility of inaccuracy due to truncation
artifacts. In order to simplify the use of the recurrence for-

for the real and imaginary channels, respectively. For a typi- mula, we perform all calculations using dimensionless units
cal NMR problem, our model parameters U are then the for the frequencies and damping factors,
resonance frequencies v, the phases f, the amplitudes I , and
the relaxation rates a. If we define the noise to be that part
of the data vector not fit by the model, and take the prior v Å 2pf

SW
, a Å b

SW
, [7]

probability for a given noise vector to be a Gaussian with
variance s 2 , then the likelihood of the data is given by

where f and b are the resonance frequencies and decay rates
in hertz, respectively, and SW is the spectral width in hertz.P(DÉU, s, I) Å (2ps 2)0NexpS0 Q

2s 2D , [4]
To evaluate the elements of the ‘‘interaction matrix’’ g

where Q is the sum of the squared residuals:
gij Å UirUj / VirVj [8]

Q Å ∑
N

iÅ1

(dR( ti ) 0 fR( ti ))2 / ∑
N

iÅ1

(dI ( ti ) 0 fI ( ti ))2

appearing in the third term of Eq. [5] , we make use of the
closed-form expressions given by Bretthorst (Ref. (10) , Eqs.

Å (dRrdR / dIrdI ) 0 2 ∑
m

jÅ1

(dRrUj / dIrVj) [28] and [29]) . Unlike some previous implementations of
Bayesian and maximum-likelihood estimation (7, 15, 17) ,
we make no assumptions concerning the orthogonality of/ ∑

m

jÅ1

∑
m

kÅ1

(UjrUk / VjrVk) . [5]
the model basis functions, thereby ensuring that our evalua-
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219BAYESIAN TIME-DOMAIN PARAMETER ESTIMATION

tion of Q will be accurate even if there is significant overlap parameter estimation problems, it need not be the case for
some extreme but not unrealistic cases, as we will see below.of the Lorentzian lines.

We have chosen to use the Metropolis–Hastings Monte Monte Carlo sampling is particularly advantageous when we
wish to determine the limits of our ability to quantitativelyCarlo algorithm (2, 3) to sample directly from P(DÉU, s,

I) or P(DÉU, I) (Eqs. [4] and [6], respectively) . In this interpret poor-quality data.
Although the Metropolis algorithm is very straightfor-way, we can be assured that we are obtaining an accurate

picture of the posterior distribution, even if it is highly non- ward, it can be dangerous if misused. One insidious aspect
of Monte Carlo-based sampling methods is the need to deter-Gaussian. In addition, there is now a substantial body of

literature on the use of Markov chain methods (such as mine the degree of convergence. Two aspects of conver-
gence must be considered when using Monte Carlo methods.Metropolis–Hastings) in statistical inference that deals both

with theoretical aspects such as their convergence properties The first is the convergence from the arbitrary starting point
to the target distribution (in our case the posterior probabilityand with practical implementation issues (18, 19) . The Me-

tropolis algorithm for stochastically sampling a density func- density) , also known as the burn-in or equilibration period.
The number of iterations required to achieve this conver-tion was first developed to solve problems in statistical ther-

modynamics (2) , and was later generalized and introduced gence can be greatly influenced by the choice of starting
point. For the types of data and models likely to be foundinto the statistical literature by Hastings (3) . For a general

introduction to the Metropolis–Hastings algorithm and its in NMR data analysis, the most crucial parameters are the
frequencies, as the posterior density is usually very sharplymathematical underpinnings, the reader may consult Refs.

(18, 19) . peaked in those dimensions. Fortunately, adequate starting
values can be obtained from a simple Fourier transform spec-In our implementation we use the following version of

the original Metropolis algorithm: trum. Assurance that convergence to a unique stationary
distribution has been achieved can be obtained by per-1. Let q(P) be a multivariate normal distribution with a
forming multiple runs from several widely dispersed startingcovariance matrix C centered at a point P in an M-
points (20) .dimensional parameter space (this space need not have

The second important measure of convergence pertains tothe same dimensionality or parametrization as the
the efficiency with which the target distribution is sampledspace of all model parameters U defined in Eq. [3]) .
after the burn-in period. This often depends crucially on the2. Choose a starting point P0 and let i Å 0.
sampling density q(P) . A poor choice of q(P) can lead3. Sample a point Y from q(Pi ) .
to extremely inefficient sampling, particularly if the target4. Sample a point U from a uniform (0, 1) distribution.
density is highly correlated. This could cause an inexperi-

5. If U ° P(DÉY )
P(DÉPi )

, then let Pi/1 Å Y , enced user to underestimate the uncertainty in the parameter
estimates. In practice, inefficient sampling can usually be

else, let Pi/1 Å Pi . detected through the presence of low-frequency oscillations
6. Let i Å i / 1. in the Monte Carlo points as a function of iteration number,
7. Go to 3. and can be corrected by adjusting the sampling covariance

matrix C so that q(P) better approximates P(DÉP) (19) .It can be shown that no matter what the form of q(Pi ) , the
above algorithm will converge to sampling from P(DÉPi ) In our experience, C can be determined in an iterative fash-

ion during the equilibration phase of the calculation. Thisgiven a sufficient number of equilibration iterations, assum-
ing certain regularity conditions. can be done by performing several short Monte Carlo simu-

lations and estimating the sample variances and correlationWe believe that the use of Monte Carlo sampling offers
significant advantages in the Bayesian NMR parameter esti- coefficients
mation problem. In particular, it allows the very straightfor-
ward incorporation of constraints among model parameters

Kij Å
Cij√

CiiCj j

[9]simply by a suitable choice of the P space sampled by the
Metropolis algorithm. Furthermore, it forces us to make very
few assumptions about the shape of the posterior distribu-
tion. By contrast, the methods employed by Bretthorst at from the Monte Carlo samples. The variances Cii are then

scaled by a factor of 0.4–0.8 to keep the rejection rate fromtimes approximate the posterior probability density function
by expanding the argument of the exponential function in becoming too large, and the off-diagonal elements of C are

recalculated from the correlation coefficients. This new sam-Eq. [4] in a Taylor series about the parameter vector which
maximizes the posterior probability (1, 8, 11) . This series pling covariance matrix C is used for the next Monte Carlo

run, the starting point of which is taken to be the last Monteexpansion is then truncated at the quadratic term, which is
equivalent to the assumption that the posterior is approxi- Carlo sample from the previous run. This is repeated until

plots of the parameter values vs iteration number have stabi-mately Gaussian. Although this is true for many simple NMR
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220 ANDREC AND PRESTEGARD

lized, do not have low-frequency oscillations, and have rejec- RESULTS FOR A DATA SET CONTAINING
TWO WELL-RESOLVED SIGNALStion rates between 50 and 80%.

The argument could be made that the difficulties associ-
ated with the Monte Carlo sampling from highly correlated To test our implementation and to provide some empirical

justification for the use of Bayesian error estimates, we per-distributions could be avoided by a suitable reparametriza-
tion of the model (19, 21) . In principle, a reparametrization formed parameter estimation using a data set containing 256

complex points synthesized from the parameters shown incould be found which could both alleviate the difficulties
caused by correlation and restore approximate normality, Table 1 (all phases fi were set to zero), and synthetic

Gaussian noise with a standard deviation of 20 was added.allowing the use of Gaussian approximations such as those
used by Bretthorst (1, 7) . Although such reparametrizations The Fourier transform of the data set is shown in Fig. 1.

The sampling covariance matrix C was determined using thecould result in an improvement in computational efficiency,
we feel that they are not helpful in the long run. In particular, iterative approach described above. A total of 60,000 Monte

Carlo iterations were performed in the quantitative samplingreparametrization of the model functions could result in pa-
rameters with no obvious physical meaning, thereby depriv- phase of the calculation, of which every fourth value was

stored to disk for subsequent analysis. The overall Metropolising the analyst of an ability to judge parameter values on the
basis of physical experience. Monte Carlo sampling based on rejection rate during the parameter estimation sampling was

70%. The final 60,000 iteration run required approximatelythe model in its spectroscopically natural parametrization
has a simplicity and directness of interpretation and visual- 36 s of CPU time on a 150-MHz Silicon Graphics Indy R4400

computer, and the execution time was dominated by the evalu-ization that can assist rather than hinder the spectroscopist’s
intuition. ation of the projections of the model basis functions onto the

data (i.e., the second term of Eq. [5]).
The Monte Carlo samples are shown graphically in Fig.IMPLEMENTATION

2, and summary statistics of the parameter estimates are
given in Table 1. The fact that the parameter space is six-The implementation outlined above was coded using the
dimensional makes visualization of the output somewhatC programming language with an X/Motif-based graphical
challenging. We simplify the visualization problem by plot-user interface in the package X Rambo (X-based Rigorous
ting the Monte Carlo samples on 15 panels, correspondingparAMeter estimation using Bayesian methOds). Output vi-
to each of the pairwise combinations of the M independentsualization and plotting were performed using the xmgr (P.
model parameters. Therefore, each panel corresponds to aJ. Turner, v. 3.01) and X Gobi (Bellcore, 1995 release) soft-
projection of the entire ‘‘cloud’’ of Monte Carlo samplesware packages. Pseudorandom number generation was per-
onto a two-dimensional subspace corresponding to one offormed using the L’Ecuyer long-period uniform deviate gen-
the M(M 0 1)/2 possible orthogonal ‘‘viewpoints’’ in theerator and the Bays–Durham shuffling procedure given in
M-dimensional parameter space. Overall, the resulting figure(22) . Independent multivariate normal pseudorandom num-
gives a visual representation of the correlations between thebers were generated from uniform deviates using the Box–
model parameters. For example, it is immediately clear fromMuller algorithm (22, 23) . Correlated multivariate normal
Fig. 2 that all of the parameter estimates are uncorrelated,pseudorandom numbers were generated using the method of
with the notable exceptions of positive linear correlationBarr and Slezak (23) : given a vector Z of independent nor-
between the estimated linewidths and estimated intensitiesmal random numbers of mean zero and variance one, a vector
for each peak. This is not surprising, since the best fit to aX normally distributed with covariance matrix C can be
set of observed FID data points given an underestimate ofcalculated using
the decay rate would result in an underestimate of the t Å
0 point of the FID, and vice versa.

X Å M / BZ , [10] In addition to the mean values and the standard deviations
of the Monte Carlo samples, Table 1 also includes nonpara-
metric estimates of the 70, 85, and 95% credible intervals.where M is the vector of mean values, and B is the lower

triangular matrix determined using the Cholesky factoriza- For comparison, given a univariate normal distribution,
these credible intervals would correspond to approximatelytion C Å BBT (24) . All data sets were analyzed using mod-

els of the form of Eq. [3] using Metropolis Monte Carlo {1.0, {1.5, and {2.0 standard deviations about the mean,
respectively. A nonparametric analysis of correlated normalsampling from P(UÉD , I) (Eqs. [2] and [6]) . Means and

the elements of the variance/covariance matrix of the Monte pseudorandom numbers corresponding to the covariance ma-
trix estimated from the Monte Carlo samples is consistentCarlo samples were estimated using Miller’s updating

method (25) . Multivariate credible regions were determined with the posterior probability being a multivariate Gaussian
(data not shown). Since in this case the posterior distributionfrom the Monte Carlo samples using the nonparametric

method of Besag et al. (26) . is approximately symmetrical, it can be assumed that the
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221BAYESIAN TIME-DOMAIN PARAMETER ESTIMATION

TABLE 1
Results of Parameter Estimation for the Well-Resolved Two-Signal Data Set

Peak 1 Peak 2

Frequency Linewidth Frequency Linewidth
(Hz)a (Hz)a Intensity (Hz)a (Hz)a Intensity

Correct valuesb 500.000 15.00 50.00 0100.000 5.00 40.00
Mean { standard deviation

of MC samples 499.81 { 0.2 13.2 { 2 46.6 { 3 0100.11 { 0.1 7.0 { 2 42.6 { 3
70% credible intervalc 499.46 9.8 40.9 0100.38 4.0 37.4

500.16 16.9 52.7 099.84 10.1 48.1
85% credible intervalc 499.39 9.1 40.0 0100.43 3.3 36.4

500.23 17.5 53.8 099.79 10.7 49.0
95% credible intervalc 499.30 8.3 38.9 0100.48 2.6 35.3

500.32 18.5 55.2 099.73 11.6 50.5

a Parameter values have been converted from dimensionless units assuming a spectral width of 3000 Hz.
b Parameters used to create the synthetic data.
c Parameter values which define the corners of a hyperrectangle in the parameter space which encloses the indicated fraction of the posterior probability

density.

means of the Monte Carlo samples will be good estimators all of the correct parameter values lie within the estimated
70% credible intervals (for this particular noise realization).for the maximum-likelihood parameters. It is clear from the

results shown in Table 1 and Fig. 2 that the maximum- In order to convince ourselves that the credible intervals
are indeed a realistic estimate of the uncertainties in thelikelihood estimates determined from the Monte Carlo sam-

ples are consistent with the correct parameter values. In fact, parameter values, we performed the following computational

FIG. 1. Fourier transform of the well-resolved two-signal synthetic data set. The data were zero-filled to 512 points, and an 807 skewed sine-bell
window function was applied prior to transformation.
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222 ANDREC AND PRESTEGARD

FIG. 2. Monte Carlo samples for the well-resolved two-signal synthetic data set. Each panel corresponds to a projection of the full set of Monte
Carlo samples onto a plane corresponding to each pair of parameters. The solid lines indicate the maximum-likelihood estimates of each parameter.

experiment. For a given synthetic noise realization, we per- apparent from Table 2 that the means of the estimated param-
eters agree very well with the correct values shown in Tableformed 40,000 iterations of Metropolis Monte Carlo sam-

pling in order to determine the estimated parameters ( the 1, indicating that the parameter estimates are unbiased in
the classical sense. Furthermore, the standard deviations ofmean of the Metropolis Monte Carlo samples) and the esti-

mated error ( the standard deviation of the Metropolis Monte the estimated errors are approximately an order of magnitude
smaller than the means of the estimated errors, indicatingCarlo samples) . We then repeated this process for 800 differ-

ent noise realizations and determined the following four sta- that the estimated errors have negligible uncertainty (at least
for the purpose of error estimation). Most importantly, thetistical parameters: ( i ) the mean of the estimated parameters,

( ii ) the standard deviation of the estimated parameters, ( iii ) standard deviations of the estimated parameters and the
means of the estimated errors are nearly identical, indicatingthe mean of the estimated errors, and (iv) the standard devia-

tion of the estimated errors (Table 2). First of all, it is that the Bayesian error estimates are empirically consistent

TABLE 2
Results of Parameter Error Validation for the Well-Resolved Two-Signal Data Set

Mean of the Standard deviation of Mean of the Standard deviation of
estimated parameters the estimated parameters estimated errors the estimated errors

Peak 1 frequencya 500.03 0.20 0.21 0.02
Peak 1 linewidtha 15.3 2.0 2.1 0.06
Peak 1 intensity 50.5 3.4 3.4 0.18
Peak 2 frequencya 0100.00 0.14 0.14 0.01
Peak 2 linewidtha 5.67 1.6 1.7 0.15
Peak 2 intensity 41.1 2.7 2.9 0.18

a Parameter values have been converted from dimensionless units to hertz assuming a spectral width of 3000 Hz.
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223BAYESIAN TIME-DOMAIN PARAMETER ESTIMATION

with the more classically motivated estimates. Therefore, we allowed us to directly estimate the posterior distribution of
the spectroscopically most interesting parameters.conclude that the width of the Bayesian posterior probability

density is indeed a realistic estimate of the error in the param- Analysis of the 8- and 16-Hz linewidth data sets was
performed using 60,000 Monte Carlo iterations, of whicheter estimate.
every fourth value was stored for analysis. The results are
shown in Tables 3 and 4 and Fig. 4. It is clear that now all

RESULTS FOR COUPLING CONSTANT ESTIMATION four parameters are linearly correlated. Both the mean and
FROM ANTIPHASE DOUBLETS the maximum-likelihood parameter estimates are close to

the correct values and the correct values are again within
the 70% credible interval hyperrectangle. There is a clearIn order to explore the utility of our Monte Carlo-based

Bayesian approach in more challenging problems, we used asymmetry in the posterior distribution for the 16-Hz line-
width data set, as well as the appearance of nonlinear correla-our program to estimate coupling constants from antiphase

doublets in which the linewidth was significantly larger than tion in the frequency/linewidth, splitting/ linewidth, and
linewidth/ intensity scatter plots, indicating that the posteriorthe splitting. The estimation of coupling constants is obvi-

ously of great importance to practical NMR applications, probability density can no longer be well approximated by
a Gaussian distribution (Fig. 4b).because of the relationship of three-bond coupling constants

to torsional angles about the central bond (27) . For macro- In order to test the limits of our ability to accurately mea-
sure coupling constants in noisy data, we attempted an analy-molecules, these coupling constants are often best measured

from antiphase components of cross peaks in two- and three- sis of an antiphase doublet with a 4-Hz splitting and 28-Hz
linewidth. This is clearly an extreme example, the analysisdimensional correlation experiments (27) . Double-quantum

spectra used to separate signals from 13C pairs as opposed of which would be nearly hopeless using standard methodol-
ogies. The resulting estimates are shown in Table 5 and Fig.to isolated 13C sites (such as the INADEQUATE experi-

ment) also return antiphase multiplet components (28) . The 5. It is quite clear that the posterior distribution is wildly non-
Gaussian. The distribution can be divided into two distinctpeak-to-peak separation of an overlapped antiphase doublet

is a complicated function of the actual splitting and the line- regions: one which is in approximate agreement with the
correct parameter values (which we will call region A), andwidth, and a naive measurement of the peak-to-peak separa-

tion will overestimate the coupling constant. More accurate one with intensities that are much larger and splittings that
are much smaller than the correct values (region B). Sinceestimates can be obtained by solving simultaneous equations

involving the absorptive and dispersive peak-to-peak separa- the posterior distribution has severe nonlinear correlations,
it is not possible to choose a single covariance matrix C thattions (29) , nonlinear curve fitting in the frequency domain

(30–32) , or trigonometric manipulation of the time-domain would allow for efficient sampling. Instead, we chose to set
the elements of the sampling covariance matrix correspond-data (33) . It is generally accepted that these methods are

unreliable when the linewidth is more than twice the magni- ing to the frequency/intensity, splitting/ intensity, and line-
width/ intensity pairs to zero, and to perform 10.5 milliontude of the splitting (34) , but the estimation of the precision

of the extracted splittings has been very difficult even under Monte Carlo iterations, of which every 700th was saved for
analysis. The simulation efficiency could be significantlyfavorable conditions.

We generated three synthetic 256-point time-domain data improved by allowing C to depend on whether the current
iteration point was in region A or B. Such a position-depen-sets, each containing a single antiphase doublet with a split-

ting of 4 Hz, and linewidths of 8, 16, and 28 Hz, respectively. dent sampling density could be easily incorporated using the
Hastings generalization of the Metropolis algorithm (3) , butGaussian noise with standard deviation 20 was added to all

three FIDs, resulting in frequency-domain signal-to-noise has not yet been implemented in the current version of
X Rambo.ratios of approximately 22:1, 9:1, and 4:1, respectively. The

Fourier transforms of the data sets are shown in Fig. 3. All As might have been expected given the linewidth and the
signal-to-noise ratio of the data, the Monte Carlo Bayesianthree data sets were analyzed using X Rambo in a manner

similar to the well-resolved peak case described above, and analysis indicates that only a vague quantitative interpreta-
tion is possible. For example, we could state with a reason-the results are shown in Tables 3, 4, and 5. It was assumed

that the intensities and linewidths of the two multiplet com- able degree of certainty that the coupling constant is less
than 6 Hz based on the 95% credible interval (Table 5). Aponents were equal, and that the phases of the two compo-

nents were 07 and 1807, respectively, thereby reducing the more precise determination of the splitting would require
either data with a higher signal-to-noise ratio or further priordimensionality of the parameter space P to four from a

potential maximum dimensionality of eight ( the dimension- information about the other parameters. For example, we
might know that an intensity greater than 1000 is physicallyality of U) . In addition, the frequencies of the two peaks of

the multiplet were parametrized in terms of the frequency impossible based on the molecular structure and the intensity
of better-resolved doublets elsewhere in the spectrum. Thisof the downfield multiplet component and the splitting. This
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224 ANDREC AND PRESTEGARD

FIG. 3. Fourier transform of the antiphase doublet synthetic data sets, having a splitting of 4 Hz, and linewidths of 8, 16, and 28 Hz. The lines
indicate the true 4-Hz splitting. The data were zero-filled to 512 points, and an 807 skewed sine-bell window function was applied prior to transformation.

would greatly reduce the posterior probability density in selectively labeled at several positions with 13C and 15N in-
corporated into field-oriented DMPC/DHPC micelles (35) .region B and allow the estimation of a realistic lower bound

on the coupling constant. Such prior information could be This system spontaneously orients in magnetic fields, so that
signals are split by residual through-space dipolar couplingsincorporated in a quantitative fashion either in the form of

equality constraints (such as intensity ratios predicted using to nearby spins, as well as through-bond scalar couplings to
bonded spins. Accurate measurement of the splittings canthe molecular structure) or as an informative prior probabil-

ity P(UÉI) . provide valuable structural information (36) . The experi-
ment presented here is a one-dimensional 13C INADE-As a final example, we present the determination of cou-

pling constants from antiphase doublets in actual experimen- QUATE experiment (37) in which 13C– 13C splittings appear
as antiphase doublets. The data shown in Fig. 6a consist oftal data. The data were obtained from a myristoylated peptide

TABLE 3
Results of Parameter Estimation for the 8-Hz Linewidth Antiphase Doublet Data Set

Frequencya Splittinga Linewidtha Intensity

Correct valuesb 200.00 4.00 8.00 200.0
Mean { standard deviation

of MC samples 199.97 { 0.04 4.07 { 0.09 7.6 { 0.7 190.5 { 9
Maximum-likelihood estimatec 199.97 4.08 7.5 189.3
70% credible intervald 199.91 3.95 7.0 178.6

200.03 4.17 8.2 203.0
85% credible intervald 199.90 3.92 6.8 175.6

200.05 4.20 8.4 207.2
95% credible intervald 199.88 3.87 6.6 171.8

200.07 4.23 8.6 212.1

a Parameter values have been converted from dimensionless units assuming a spectral width of 1100 Hz.
b Parameters used to create the synthetic data.
c The mean of 1% of the Monte Carlo samples having the largest likelihood.
d Parameter values which define the corners of a hyperrectangle in the parameter space which encloses the indicated fraction of the posterior probability

density.
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TABLE 4
Results of Parameter Estimation for the 16-Hz Linewidth Antiphase Doublet Data Set

Frequencya Splittinga Linewidtha Intensity

Correct valuesb 200.00 4.00 16.00 200.0
Mean { standard deviation

of MC samples 199.9 { 0.2 4.0 { 0.4 15 { 1 192 { 28
Maximum-likelihood estimatec 199.9 4.2 15.1 180
70% credible intervald 199.8 3.6 14.2 164

200.2 4.4 17.2 230
85% credible intervald 199.7 3.4 13.8 158

200.3 4.5 17.7 247
95% credible intervald 199.7 3.1 13.2 150

200.5 4.6 18.4 278

a Parameter values have been converted from dimensionless units assuming a spectral width of 1100 Hz.
b Parameters used to create the synthetic data.
c The mean of 1% of the Monte Carlo samples having the largest likelihood.
d Parameter values which define the corners of a hyperrectangle in the parameter space which encloses the indicated fraction of the posterior probability

density.

four such doublets, one of which is further split by a passive analysis using X Rambo by introducing equality constraints
among the appropriate splitting parameters. No constraintsC–N coupling. There is also what appears to be an artifact

arising from natural-abundance 13C in the lipid chains at involving the intensities and linewidths were used, and all
phases were assumed to be 07 or 1807, resulting in a P spacehigh field. The doublets arise from carbonyl carbon–alpha

carbon pairs from a doubly labeled phenylalanine residue having 30 dimensions (5 center frequencies, 3 splittings, 11
linewidths, and 11 intensities) . The initial starting point wasand a doubly labeled myristoyl chain in the molecule. For

comparison with the results obtained using synthetic data estimated from the Fourier transform spectrum, and conver-
gence was achieved using the iterative method describedabove, the ratios of linewidths and coupling constants for

the various doublets range from approximately 1:1 to 3:1, above. The parameter estimation Monte Carlo was run for
60,000 iterations, of which every fourth value was storedand the frequency-domain signal-to-noise ratios range from

5:1 to 15:1. Since each 13C– 13C pair gives rise to two dou- to disk for subsequent analysis. The overall rejection rate
was 75%.blets with the same splitting, there are only two distinct

active coupling constants in the spectrum, as shown in Fig. A detailed visual inspection of the resulting samples using
X Gobi revealed the posterior probability density to be well6a. This prior information can be easily incorporated into the

TABLE 5
Results of Parameter Estimation for the 28-Hz Linewidth Antiphase Doublet Data Set

Frequencya Splittinga Linewidtha Intensity

Correct valuesb 200.00 4.00 28.00 200.0
Mean { standard deviation

of MC samples 201.0 { 0.9 2 { 2 30 { 2 1020 { 1060
Maximum-likelihood estimatec 199.9 4.3 26.8 174
70% credible intervald 199.6 0.3 25.6 150

201.9 4.8 32.7 3037
85% credible intervald 199.4 0.2 24.0 129

202.0 5.4 33.3 3486
95% credible intervald 199.1 0.2 22.3 112

202.1 5.8 34.2 3818

a Parameter values have been converted from dimensionless units assuming a spectral width of 1100 Hz.
b Parameters used to create the synthetic data.
c The mean of 1% of the Monte Carlo samples having the largest likelihood.
d Parameter values which define the corners of a hyperrectangle in the parameter space which encloses the indicated fraction of the posterior probability

density.
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FIG. 5. Monte Carlo samples for the 28-Hz linewidth antiphase doublet data set. Each panel corresponds to a projection of the full set of Monte
Carlo samples onto a plane corresponding to each pair of parameters. The solid lines indicate the maximum-likelihood estimates of each parameter. Note
the logarithmic scale for the intensity parameter.

behaved and nearly Gaussian, with significant linear correla- ously obtain parameter and error estimates, while also pro-
viding an immediate assessment of any correlations amongtion between J1 and J2 , as well as between linewidths and
the model parameter estimates. Such an analysis of data withintensities within doublets. The resulting estimates of the
overlapping antiphase doublets, like that presented above,posterior probability densities of the three coupling constants
would have been difficult using the earlier approaches ofindependent of the other parameters are shown in Fig. 6b.
Kim and Prestegard (29) or McIntyre and Freeman (33) .As might have been expected based on the relative line-
In particular, the method of Kim and Prestegard cannot bewidths, J3 has the largest uncertainty of the three splittings,
used for the analysis of the 28-Hz linewidth antiphase data,but it is clear that an estimate of J3 and an estimate of the
as the signal-to-noise is insufficient to estimate the dispersiveerror are possible. It is clear that X Rambo is an effective
peak-to-peak separation. The low signal-to-noise also makestool for the determination of splittings from experimental
the method of McIntyre and Freeman difficult to apply, asdata. Furthermore, we can easily determine splittings from
the integral of the magnitude spectrum as a function of esti-multiplets containing both active and passive couplings, as
mated J does not show a clean minimum. Estimation of thewell as impose equality constraints among the parameters.
uncertainties in the estimated J is not possible using either
method.DISCUSSION

The presence of correlations among parameters in mod-
The prominent feature of Monte Carlo sampling-based els for NMR data has in the past been a neglected source

of information. It is clear from the simulated data setsBayesian parameter estimation is the ability to simultane-

FIG. 4. Monte Carlo samples for the 8-Hz linewidth (a) and 16-Hz linewidth (b) antiphase doublet data sets. Each panel corresponds to a projection
of the full set of Monte Carlo samples onto a plane corresponding to each pair of parameters. The solid lines indicate the maximum-likelihood estimates
of each parameter. The boxes shown in dotted lines represent nonparametric estimates of the 70, 85, and 95% credible intervals (see text) .
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FIG. 6. (a) Fourier transform of a one-dimensional 13C INADEQUATE data set obtained using the 15 amino acid myristoylated peptide Myr*-
G†NIFANL*F†KGL*F†GKK containing backbone 13C– 13C(*)- and 15N(†)-labeled residues incorporated into field-oriented DMPC/DHPC micelles
(37) . A 40-Hz exponential window function was applied prior to Fourier transformation. The upfield singlet is due to natural-abundance 13C in the lipid
chains. Splittings J2 and J1 have been assigned to the 13C– 13C pair of the myristoyl group and the 15N of the adjacent glycine, respectively. J3 has been
assigned to the 13C– 13C pair of the second labeled leucine residue. No passive coupling is observed due to the averaging of the 13C– 15N coupling to
zero. The other labeled sites are not observed due to excessively broad linewidths and/or small splittings (37) . (b) Histograms showing the estimates
of the marginal posterior probability densities of the three coupling constants determined from the Bayesian Monte Carlo analysis. The maximum-
likelihood estimates of J1 , J2 , and J3 are 155, 219, and 239 Hz, respectively. The 85% credible intervals estimated using the full 30-dimensional joint
density are 139–167, 211–227, and 212–268 Hz, respectively.

presented above that such correlations exist even for well- introduction of prior information. One simple spectro-
scopically relevant application is the estimation of intensi-resolved Lorentzians, and that these correlations can be-

come nonlinear for more complex models. Recognition of ties as a function of a pulse sequence parameter, such as
in a series of relaxation or pulsed field-gradient diffusioncorrelations among the parameter estimates could be used

to reduce the uncertainty of parameter estimates by the data sets. Since we do not expect the linewidths of the
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peaks to change as a function of the relaxation delay or rately estimate the frequencies of the decaying sinusoids
if the signals are well resolved (7 ) . In order to investigategradient strength, we could estimate a single linewidth

parameter for each peak using all of the data sets simulta- this effect in overlapped antiphase doublets, we generated
256-point noiseless synthetic FIDs containing two anti-neously. This will presumably lead to a higher precision

estimate of the linewidth, as we are taking advantage of a phase peaks at 200 and 208 Hz (at a spectral width of
1100 Hz) , and a Gaussian decay envelope given bylarger number of data points. Since linewidth and intensity

estimates are correlated even for well-resolved Lorentzi-
ans, this will result in a concomitant decrease in the error
in the intensity estimates. The ability to simultaneously expS0t 2

2b 2D .
analyze such groups of data sets has already been incorpo-
rated into X Rambo , along with its natural extension to
the analysis of two-dimensional data. This choice of splitting and spectral width results in a

single node at approximately the 138th data point ( t ÅThe existence of strong nonlinear correlations between
model parameters in some extreme cases also illustrates 125 ms) due to the beat frequency of the two antiphase

components. From a data analysis perspective, estimationthe dangers of the use of marginalized probability densi-
ties, which have been advocated as a mechanism for re- of the time at which this node occurs is equivalent to an

estimation of the splitting. We then performed a Bayesianducing the dimensionality of the parameter estimation
problem (1, 11 ) . Given a multivariate joint probability parameter estimation from this noiseless data with an ex-

ponentially decaying sinusoidal model using X Rambo.density function over all of the model parameters, one can
determine a univariate or lower-dimensional multivariate The deviation of the resulting estimate for the splitting

from the correct value is shown in Fig. 7, and can be takenmarginal density function by integrating the product of
joint density function and any prior density over the entire to be an estimate of the systematic error due to the use

of the incorrect decay model.domain of the variables being eliminated. An example of
marginalization can be seen in Eq. [6 ] above. Also, each As expected, the deviation is nearly zero if the fre-

quency-domain linewidth is significantly smaller than thepanel in Figs. 2, 4, and 5 can be viewed as an approximate
representation of the bivariate marginal density for that splitting. As the linewidth increases, however, the system-

atic error becomes significant. This is not surprising, aspair of parameters. Although the use of marginal densities
can be convenient from a computational or visualization the signal envelope is now determined by the interference

of the two antiphase components, the details of which areperspective, in general it represents a loss of information
and can have an undesirable effect on the parameter esti- significantly influenced by the decay mode of the signal.

For b values comparable in magnitude or longer than themates. For example, consider the posterior probability for
the 28-Hz linewidth doublet data set shown in Fig. 5. If time of the node point, the exponentially decaying sinusoi-

dal fit will attempt to better fit the thinner tail of thewe had marginalized with respect to the intensity parame-
ter, we would have obtained the density shown in the Gaussian function by shifting the estimated node point to

a later time, resulting in an underestimate of the splitting.lower three panels of Fig. 5. It is clear that the maximum-
likelihood estimate based on that marginalized density is As the lines become broader ( i.e., b continues to de-

crease ) , the Gaussian envelope will cause a steeper decayin region B (splitting É 0.4 Hz) , whereas the maximum-
likelihood estimate based on the full joint density is in before the node point, which the exponential model will

attempt to fit by shifting the estimated node point to anregion A (splitting É 5 Hz) . This seemingly paradoxical
result arises from the fact that the probability mass corre- earlier time, resulting in an overestimate of the splitting.

Thus, the dependence of the systematic error of the split-sponding to region B is spread out over an extremely
large area in the intensity dimension. Similarly, any prior ting on b is not monotonic, but instead reaches an extre-

mum when b is somewhat smaller than the position of theinformation about the intensity could have a very dramatic
effect on the marginal density of the splitting. Therefore, first node.

Systematic error due to an incorrect assumption of de-marginalization can be a useful tool, but it should be used
with caution. cay mode has also been observed by Yang and Havel in

their frequency-domain analysis of COSY spectra ( 31 ) .One further point of concern is the effect of using an
inappropriate model for the decay envelope of the signal. They recommended that a Gaussian lineshape be used in

the analysis, and that the data should be processed in suchIn all of the above analyses, we have assumed that the
decay is a simple exponential, but this need not be the a way as to make the peaks appear as nearly Gaussian as

possible. Indeed, if it was known a priori that the decaycase for experimental data due to the presence of magnetic
field inhomogeneity or multi-spin relaxation processes. mode was exponential with a rate a , one could use the

window function exp(at )exp(0bt 2 ) to perform a Lo-Bretthorst has shown that the use of an incorrect decay
model does not significantly impact the ability to accu- rentz–Gauss transformation ( 34 ) . A nonlinear fit using a
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FIG. 7. An assessment of the systematic error in the estimate of a splitting from an antiphase doublet arising from the fitting of a noiseless Gaussian-
decaying signal using an exponentially decaying model function (see text). The error bars correspond to the marginal standard deviations of the estimated
splitting, and represent a range of splitting values consistent with the Gaussian-decaying data when fit with an exponentially decaying model. The estimated
splittings are plotted as a function of the frequency-domain full width at half-height (Dn1/2 ) and the time-domain Gaussian decay parameter b.

Gaussian model would then be free of systematic error, suring the analyst that these uncertainties have been esti-
mated in a realistic manner.at least in principle. However, if the decay mode or rate

is unknown, then the use of an arbitrarily chosen window
function will not necessarily result in a fit which is free APPENDIX
of systematic error, even if it results in peaks which appear
to be Gaussian. If very high accuracy splitting estimates A Generalization of the Clenshaw Recurrence Formula
are required, the safest approach would be to fit the time- for Finite Sums
domain data without the use of any window function using
a variety of possible decay models. The dependence of Consider a summation of the form
the splitting on the assumed model could then be assessed
directly, and if significant differences are observed the

S Å ∑
N

kÅ0

dkFk , [11]best model could be chosen using statistical model selec-
tion methods.

Thus, we believe that Monte Carlo sampling-based Bayes-
where the function F obeys the recurrence relationian estimation represents a powerful tool for the quantitative

analysis of NMR data. Prior information about constraints
among model parameters can be easily incorporated, and the Fk/1 Å akFk / bkFk01 . [12]
model can be parametrized in a manner which is consistent
with the user’s spectroscopic intuition. Parameter and error

If we define a new recurrence relationestimation is performed simultaneously, thereby providing
an immediate assessment of the uncertainties in the estimated
parameters. Very few approximations are made, thereby as- yk Å akyk/1 / bk/1yk/2 / dk [13]
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